Predicting Modulation in Corticomotor Excitability and in Transcallosal Inhibition in Response to Anodal Transcranial Direct Current Stimulation
نویسندگان
چکیده
INTRODUCTION Responses to neuromodulatory protocols based either on transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS) are known to be highly variable between individuals. In this study, we examined whether variability of responses to anodal tDCS (a-tDCS) could be predicted from individual differences in the ability to recruit early or late indirect waves (I-waves), as reflected in latency differences of motor evoked potentials (MEPs) evoked by TMS of different coil orientation. METHODS Participants (n = 20) first underwent TMS to measure latency of MEPs elicited at different coil orientations (i.e., PA, posterior-anterior; AP, anterior-posterior; LM, latero-medial). Then, participants underwent a-tDCS (20 min @ 2 mA) targeting the primary motor cortex of the contralateral preferred hand (right, n = 18). Individual responses to a-tDCS were determined by monitoring changes in MEP amplitude at rest and in the duration of the contralateral silent period (cSP) and ipsilateral silent period (iSP) during contraction; the latter providing an index of the latency and duration of transcallosal inhibition (LTI and DTI). RESULTS Consistent with previous reports, individual responses to a-tDCS were highly variable when expressed in terms of changes in MEP amplitude or in cSP duration with ~50% of the participants showing either little or no modulation. In contrast, individual variations in measures of transcallosal inhibition were less variable, allowing detection of significant after-effects. The reduced LTI and prolonged DTI observed post-tDCS were indicative of an enhanced excitability of the transcallosal pathway in the stimulated hemisphere. In terms of predictions, AP-LM latency differences proved to be good predictors of responses to a-tDCS when considering MEP modulation. CONCLUSION The present results corroborate the predictive value of latency differences derived from TMS to determine who is likely to express "canonical" responses to a-tDCS in terms of MEP modulation. The results also provide novel suggestive evidencethat a-tDCS can modulate the excitability of the transcallosal pathway of the stimulated hemisphere.
منابع مشابه
Does the Longer Application of Anodal-Transcranial Direct Current Stimulation Increase Corticomotor Excitability Further? A Pilot Study
Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability. Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one se...
متن کاملTowards the use of transcranial direct current stimulation to improve motor function
This study investigated the effect of anodal tDCS on motor control and corticomotor excitability in healthy controls, with the long-term goal of investigating the use of anodal tDCS to improve motor function in covertly aware vegetative state patients. Experiment I investigated the effects of anodal tDCS on a motor reaction time task, and found no effect of tDCS on performance, whether or not p...
متن کاملEffects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory
Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...
متن کاملCharacterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex
Transcranial direct current stimulation (tDCS) is a novel intervention that can modulate brain excitability in health and disease; however, little is known about its effects on bilaterally innervated systems such as pharyngeal motor cortex. Here, we assess the effects of differing doses of tDCS on the physiology of healthy human pharyngeal motor cortex as a prelude to designing a therapeutic in...
متن کاملEffects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy
Objective. High intensity interval treadmill training (HIITT) has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1) in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in human neuroscience
دوره 10 شماره
صفحات -
تاریخ انتشار 2016